
Co-Design with DPUs
BUILDING SYSTEM SOFTWARE WITH HARDWARE DESIGN

CONSIDERATIONS – FIRST STEPS

PRESENTER: DR. RYAN E. GRANT

STUDENT CREDIT: TINOTENDA MATSIKA

DPUs: What are they good for?
vDPUs: relatively new, still finding their “killer” app

vHardware designs pre-date software
vOpposite of usual co-design
vDesigns more generalized – hard to specialize on applications that are

not settled

vApps are not ready, so what do we do?

Don’t use DPUs for applications! (yet)

Applications
vAlready heavy use on CPUs and GPUs
vSmartNIC hardware is wimpy in comparison

vFinding things for the DPU to do for the application is challenging
vRequires deep application expertise combined with hardware

architecture expertise to leverage the DPU resources

vCo-design: logical conclusion -> work on broadly applicable de-
coupled solutions for software for foreseeable future

System Software to the Rescue
vDPU cycles can be useful for helping to run system software

vResource management layers (see RaDD runtimes)
vHelp with dynamic resource allocation/management
vCreate new layer of management running solely on DPU
vManage reliability solutions asynchronously (checkpoint/restart)
vBuild expected shared resource schedules to avoid conflicts
vSame node and multinode

Grant, Ryan E., Whit Schonbein, and Scott Levy. "RaDD runtimes: Radical and different distributed
runtimes with smartnics." In 2020 IEEE/ACM Fourth Annual Workshop on Emerging Parallel and
Distributed Runtime Systems and Middleware (IPDRM), pp. 17-24. IEEE, 2020.

System Software - Pitfalls
Just like applications – need to make sure that DPU helps and
doesn’t hurt

System software priority < application priority

But! The network is a shared
resource

So how do we reliably get out of the way of the
application?

Luckily SmartNIC/DPU resources are well located to have
the knowledge/data to get out of the application’s way

Getting out of the way is
hard
vEasier said than done

vAI/ML doesn’t save the day
vRemember we have limited compute resources

vWhat do we need to do to ”cause no
harm”?
vPredict when the network (shared resource) is

needed by the application and avoid using it with
system software

Predicting Traffic
vPredictions need to be designed for
DPU architectures
vPrediction time slot granularity matters!
vTime of predictions from P1->P2 gives
us the “opportunity” time to avoid
conflicts. Smaller time windows for
predictions give more opportunities!

Predicting Traffic
vWant to fit into the right timeslots to avoid interfering

vFirst let’s try the easy approach
vSimple ML Random forest, trained on counter data collected

during application runs

vUse a production App – LAMMPS with rhodo problem
vBluefield 1 inference time: 17.05ms on average
vTraining takes a lot longer, but we can do that elsewhere

Timeslot period – why it matters
vAt ~17ms per prediction, we can run at a maximum 58 Hz
vGood but not great, not many opportunities to send small messages
v~215 MB per prediction slot of bandwidth on a 100Gbps link

vAnother problem – inference with classic RFC on full data set is
expensive computation for Bluefield

vBut the results were pretty good: 0.97 accuracy and 0.78 recall

Getting to a better result
vWant a faster method but better accuracy/recall too!

vApproach:
vCombine sophisticated linear regression (LR) with a second layer RFC

that tells us if the LR should be trusted

vWhy?
vLinear regression does pretty well but not as well as RFC
vFundamental challenge – can’t predict when slope 0 -> another value

well

Faster, Better Predictions
vTried a bunch of ML methods and a plethora of apps and workloads

vCondensed version here with LAMMPS-rhodo
vGot accuracy up to 0.97 and recall up to 0.96
vSo accuracy == RFC and recall > RFC

vBut does it run faster?
vYes!
vInference time now 1.1ms on Bluefield
vPrediction frequency > 900Hz

Lightweight
Prediction

So 15.5X faster
inference with a
better result!

Need super speed? LR
can be tuned to as little
as 0.9ns
That much speed is not
that useful, but can use
the cycles for other
tasks

But does it translate
to other
architectures?

Yes, V100 GPU results
are 18.7X faster

So what? Why is this useful?

Benefits
vA foundation for building other useful
systems software on DPUs
vWe can get out of the applications’ way, so now we

can fill up the DPUs with other useful work

vDo you need all 900 predictions per second?
vDepends on the type/size of the messages you’re

trying to interleave with application traffic.

vDon’t need them all?
vFree up resources for other useful software on the

DPU

Other exploration
vTried a ton of different ML techniques and applications
vHyperparameter tuning, upsampling, downsampling, Neural Networks
vSome have benefits but as expected random forest did a good job

generally
vNot sure that adding in this extra complexity to find and shift between methods is

worth it

vApplications: HPCG, Laghos, LAMMPS, Lulesh, MILC, MiniAMR,
MiniFE, MiniMD
vSome apps are easier to predict that others, but none are particularly

hard

Co-design Lessons Learned
vCo-design in reverse?
vDesigning software around hardware, much like just tuning software in

the old days

vDPUs are resource limited
vMotivates taking a lightweight design approach from the beginning of a

project

vDanger in creating dependencies between work on the host and
the DPU
vTry not to get data/work stuck on DPU making everything wait

/

Now the fun begins…

Let’s build proactive systems now

Manage and communicate resource usage
between nearby nodes

CXL and disaggregated systems starting to
make resource sharing viable

We now have a foundation for building the interesting system software

Thought this was a minor engineering task
• Ballooned into a much harder problem to solve

SmartNICs in the Future
vVision towards intelligent self-learning resource management

vApplication Assistance from DPU
vApplications can be unaware of the help
vImmediate return on investment for DPUs in the data center
vNo need for applications to change to benefit

vResults not specific to Bluefield
vCan use other SmartNICs with same technique
vLooking into applying results to INCA Portals SmartNIC designs

Thank You!

Questions?

We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC).

